If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-16t+1=0
a = 16; b = -16; c = +1;
Δ = b2-4ac
Δ = -162-4·16·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{3}}{2*16}=\frac{16-8\sqrt{3}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{3}}{2*16}=\frac{16+8\sqrt{3}}{32} $
| 5x=3=43 | | 10d+10(9)=21 | | x=98*102 | | 3(x-1)+7=4x+3-3(2-x | | 20x-81=27 | | 2x×8=216 | | 4(y-4)=-6y+44 | | 11/3=3/3x-8 | | 3x+27=7x+42 | | 216/2x=8 | | 5=5x/3x-19 | | 35+x+60=180 | | -18+6x=6x-18 | | 3x^2+3x-160=0 | | 2(2x-3)-2(5-4x)=2x-1 | | 7(u+6)=-8u-33 | | 2/25x×(5x+3)=0 | | 400=30(8.75)+11t | | 2(y+3)=3(2y-5)+5(y-3/5)) | | -16=3y+2 | | 275=36-v | | 2u-8+2(3u+6)=-2(u+6) | | -3/5v=12 | | x-(x)^0.5=72 | | x-(x)^.5=72 | | 30=16x+48 | | 3b^2-441=0 | | 5u-35=-5(u-7) | | 5/8(32x+16)=4/3(12x+36) | | 4(y-5)=9y+25 | | 9w+8=5(w-4) | | 360=2(a)+2(2a) |